Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly.

نویسندگان

  • Ahmet Faik Demirörs
  • Diana Courty
  • Rafael Libanori
  • André R Studart
چکیده

Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft-hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal co-assembly route to large-area, high-quality photonic crystals

Whereas considerable interest exists in self-assembly of well-ordered, porous "inverse opal" structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a centimeter scale. Multilayered composite co...

متن کامل

Nanocrystalline Precursors for the Co-Assembly of Crack-Free Metal Oxide Inverse Opals.

Inorganic microstructured materials are ubiquitous in nature. However, their formation in artificial self-assembly systems is challenging as it involves a complex interplay of competing forces during and after assembly. For example, colloidal assembly requires fine-tuning of factors such as the size and surface charge of the particles and electrolyte strength of the solvent to enable successful...

متن کامل

Metal nanocluster metamaterial fabricated by the colloidal self-assembly.

A new bottom-up approach for fabricating the optical metamaterial is reported. An array of metal nanoparticle clusters can provide both electric and magnetic activity in the optical frequency region through the excitation of the collective plasmon resonance. A two-dimensional square array of gold nanoparticle clusters (nanoclusters) was fabricated by using the template-directed colloidal self-a...

متن کامل

A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption.

A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.

متن کامل

Electric-Field-Induced Lock-and-Key Interactions between Colloidal Spheres and Bowls

To realize new and directed self-assembly (SA) pathways, the focus in colloid science and nanoscience has shifted from spherical particles and interactions to increasingly more complex shapes and interparticle potentials. This field is fueled by recent breakthroughs in particle synthesis, such as particles with complementary shapes that allow for specific lock-and-key interactions induced by de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 17  شماره 

صفحات  -

تاریخ انتشار 2016